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• The end of Moore's law and Dennard's 
scaling has led to an explosion of specialized 
processing units (PUs) [1]
• GPUs excel at massively parallel computations 

on dense data
• CPUs with complex hardware components can 

tolerate memory latency 
• Custom Circuits like FPGAs/ASICs can perform 

specialized tasks efficiently

• Efficient implementations of applications 
must be flexibly decomposed and executed 
across PUs [2]

Programming Model

def traverse(node, q):
  if is_leaf(node):
    

for i in range(node.leaf_size):
     result += kernel_func(q, node.data[i])

  else:
    
 theta = compute_theta(q, node.data)
   if (theta < theta_threashold):
     result += kernel_func(q, node.center_of_mass())
    
 else:
      for i in range(8):
        traverse(node.children[i])

def traverse(node, q):
  if is_leaf(node):

api_reduce_leaf(node.data())

  else:

    theta = compute_theta(q, node.data)
    if (theta < theta_threashold):

api_reduce_branch(node.center_of_mass())

    else:
      for i in range(8):
        traverse(node.children[i])

User Algorithms: Apply REDwood:
for q in query_points:
  api_set_query(q)
  traverse(root, q)

Traverse-Reduce Applications
• A class of algorithms, what we call Traverse-

Reduce algorithms, has flexible hetero-
geneous decomposition 

• These algorithms traverse a sparse tree data 
structure and perform reductions over the 
visited nodes [3]

• Such algorithms are common in: Facial 
Recognition, Particle/Molecular Simulation, 
and Statistical Analysis, etc.

• Ping Pong buffering enables REDwood to 
execute the traverse and reduction phases in 
parallel with low synchronization overhead

• Executor Runtime:
• Avoid long CPU stalls 
• Can Suspend/Resume 

Queries

• Light-wight coroutine 
• Handles dependency
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• We implemented Barnes-Hut(BH), Nearest 
Neighbor (NN) with Manhattan distance, and 
NN with Euclidian distance. Experiments are 
executed on an Nvidia Jetson Nano. 

NN 
Manhattan

NN 
Euclidian

CPU Baseline 7.41x 2.5x

kNN-CUDA 5.58x 12x

SciPy 1.94x 1.1x

• REDwood APIs allows users to implement 
traverse reduce algorithms easily

• Reductions will be automatically handled by 
our {CUDA, SYCL} backends
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Offload Bulk Leaf Node 
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• Flexible leaf node size allows REDwood to 
adapt to various heterogeneous systems with 
different relative throughput between the 
CPU and the accelerator PU

• REDwood speedups over other baselines

• Performance with various leaf node sizes

Sparse Dense
-  High memory latency
+ Less Kernels accelerated

+ Less indirect memory
- More elements to reduce

BH

CPU Baseline 3.86x

GPU Baseline 6.82x
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