
Results

Motivation Methods

REDwood: Heterogenous Implementation of Tree

Applications with Accelerated REDuctions
Yanwen Xu, Tyler Sorensen University of California, Santa Cruz

• The end of Moore's law and Dennard's
scaling has led to an explosion of specialized
processing units (PUs) [1]
• GPUs excel at massively parallel computations

on dense data
• CPUs with complex hardware components can

tolerate memory latency
• Custom Circuits like FPGAs/ASICs can perform

specialized tasks efficiently

• Efficient implementations of applications
must be flexibly decomposed and executed
across PUs [2]

Programming Model

def traverse(node, q):
 if is_leaf(node):

for i in range(node.leaf_size):
 result += kernel_func(q, node.data[i])

 else:

 theta = compute_theta(q, node.data)
 if (theta < theta_threashold):
 result += kernel_func(q, node.center_of_mass())

 else:
 for i in range(8):
 traverse(node.children[i])

def traverse(node, q):
 if is_leaf(node):

api_reduce_leaf(node.data())

 else:

 theta = compute_theta(q, node.data)
 if (theta < theta_threashold):

api_reduce_branch(node.center_of_mass())

 else:
 for i in range(8):
 traverse(node.children[i])

User Algorithms: Apply REDwood:
for q in query_points:
 api_set_query(q)
 traverse(root, q)

Traverse-Reduce Applications
• A class of algorithms, what we call Traverse-

Reduce algorithms, has flexible hetero-
geneous decomposition

• These algorithms traverse a sparse tree data
structure and perform reductions over the
visited nodes [3]

• Such algorithms are common in: Facial
Recognition, Particle/Molecular Simulation,
and Statistical Analysis, etc.

• Ping Pong buffering enables REDwood to
execute the traverse and reduction phases in
parallel with low synchronization overhead

• Executor Runtime:
• Avoid long CPU stalls
• Can Suspend/Resume

Queries

• Light-wight coroutine
• Handles dependency

Query 1

Reduction A

Query 2

Reduction C

Query 1

Reduction B

Query 2CPU

Accelerator

resume resume

A B C D A B C D A B C D

Query 1
Start a second
query, 2

Reduce C

Resume Query 1

Now Reduce B

Suspend
Query 1

[1] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2015.

The aladdin approach to accelerator design and modeling. IEEE Micro 35, 3 (2015)

[2] Abdullah Gharaibeh, Tahsin Reza, Elizeu Santos-Neto, Lauro Beltrao Costa, Scott

Sallinen, and Matei Ripeanu. 2013. Efficient large-scale graph processing on

hybrid CPU and GPU systems. arXiv preprint arXiv:1312.3018 (2013)

[3] Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni.

2017. Treelogy: A benchmark suite for tree traversals. In 2017 IEEE ISPASS. IEEE

• We implemented Barnes-Hut(BH), Nearest
Neighbor (NN) with Manhattan distance, and
NN with Euclidian distance. Experiments are
executed on an Nvidia Jetson Nano.

NN
Manhattan

NN
Euclidian

CPU Baseline 7.41x 2.5x

kNN-CUDA 5.58x 12x

SciPy 1.94x 1.1x

• REDwood APIs allows users to implement
traverse reduce algorithms easily

• Reductions will be automatically handled by
our {CUDA, SYCL} backends

CPU

ResultCPUs traverse sparse
data structures

Offload Bulk Leaf Node
Computations to PUs

 Guide Traversal

Accelerator

• Flexible leaf node size allows REDwood to
adapt to various heterogeneous systems with
different relative throughput between the
CPU and the accelerator PU

• REDwood speedups over other baselines

• Performance with various leaf node sizes

Sparse Dense
- High memory latency
+ Less Kernels accelerated

+ Less indirect memory
- More elements to reduce

BH

CPU Baseline 3.86x

GPU Baseline 6.82x

	Slide 1

