
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348367229

A Modular Architecture for Procedural Generation of Towns, Intersections and

Scenarios for Testing Autonomous Vehicles

Conference Paper · October 2020

DOI: 10.1109/IV47402.2020.9304625

CITATIONS

16
READS

417

5 authors, including:

Ishaan Paranjape

University of California, Santa Cruz

4 PUBLICATIONS 22 CITATIONS

SEE PROFILE

Abdul Jawad

University of California, Santa Cruz

8 PUBLICATIONS 25 CITATIONS

SEE PROFILE

Jim Whitehead

University of California, Santa Cruz

83 PUBLICATIONS 1,650 CITATIONS

SEE PROFILE

All content following this page was uploaded by Abdul Jawad on 29 May 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348367229_A_Modular_Architecture_for_Procedural_Generation_of_Towns_Intersections_and_Scenarios_for_Testing_Autonomous_Vehicles?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348367229_A_Modular_Architecture_for_Procedural_Generation_of_Towns_Intersections_and_Scenarios_for_Testing_Autonomous_Vehicles?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ishaan-Paranjape?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ishaan-Paranjape?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ishaan-Paranjape?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Jawad-5?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Jawad-5?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Jawad-5?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jim-Whitehead-3?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jim-Whitehead-3?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jim-Whitehead-3?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdul-Jawad-5?enrichId=rgreq-9b40c234afe0c0a54a041774b1ffaf45-XXX&enrichSource=Y292ZXJQYWdlOzM0ODM2NzIyOTtBUzoxMTYwOTYzNjQ2NTg2ODgyQDE2NTM4MDY3MTE1NTQ%3D&el=1_x_10&_esc=publicationCoverPdf

A Modular Architecture for Procedural Generation of Towns, Intersections
and Scenarios for Testing Autonomous Vehicles

Ishaan Paranjape∗, Abdul Jawad†, Yanwen Xu‡, Asiiah Song§ and Jim Whitehead¶

Dept. of Computational Media
Univ. of California, Santa Cruz

Santa Cruz, CA USA

∗ iparanja@ucsc.edu, † abjawad@ucsc.edu, ‡ yxu83@ucsc.edu, § julinas@ucsc.edu, ¶ ejw@ucsc.edu

Abstract— Simulation-based testing is critical for ensuring
safety of autonomous vehicles. Autonomous vehicles are enabled
by deep learning techniques which require a large quantity
of data. With simulation testing, we can create rare events
for testing and training of autonomous vehicles. Procedural
generation of roads and modeling of driving behaviors in
an easily extendable architecture ensures that we are able to
create rare scenarios at scale with minimal artistic burden. In
this paper, we present CruzWay, a system that both supports
and creates these scenarios. With CruzWay, we are able
to procedurally generate town sized road networks or road
intersections. CruzWay supports generation of road meshes as
well as navigation meshes from SUMO road network files.
CruzWay can generate cars as well as pedestrians run by
behavior trees (BTs) in this environment. The self-contained,
modular nature of BTs in combination with procedural roads
allows us to create a large number of scenarios.

I. INTRODUCTION

Autonomous, self-driving vehicles promise to reduce the
tedium of driving, open up vehicle mobility for many people,
reduce accidents, and automate many delivery tasks. Safety
of autonomous vehicles is important to achieve these goals,
since widespread adoption cannot occur if the technology
is dangerous. Testing of autonomous vehicles must involve
driving physical vehicles on real-world roads. But, such test-
ing has many drawbacks. It is expensive. Many driving miles
are commonplace and do not explore interesting aspects of
the software. It is not possible to explore many dangerous
situations.

Simulation-based testing of autonomous vehicles ad-
dresses these concerns. Simulated driving can focus on chal-
lenging situations, is less expensive per mile, and can result
in orders of magnitude more miles of driving than physical
tests. Waymo (a subsidiary of Alphabet) is an autonomous
vehicle company which uses a virtual environment called
Carcraft to supplement real-world vehicle testing. As of Oc-
tober 2018, Waymo had logged 10 million miles in the real
world, as compared to almost 7 billion miles in simulation
[1] [2]. Simulation-based testing is increasingly common in
industry, with Amazon-backed autonomous vehicle company
Aurora using an environment called Virtual Testing Suite,
and GM’s Cruise using one called the Matrix [3].

A defining characteristic of simulated testing scenarios
is their variety. In order to fully test autonomous vehicles,
scenarios need to explore a wide range of roads, traffic
conditions, driving behaviors, vehicle types, pedestrians, bi-
cyclists, road signs, lighting, weather, signals, lane markings,
and more. Any environment designed to support simulation
testing of autonomous vehicles should aim for covering a
wide range of these axes of variability.

Supporting a wide variety of road and intersection types
is especially important. In a recent fatal accident involving
a Tesla Model X on a major US highway in 2018, one of
several contributing factors was the inability of the Autopilot
software to correctly detect lanes during a left exit scenario,
or to detect the presence of a crash attenuator in front of
a concrete barrier [4]. Procedurally generated roads, where
an algorithm is responsible for automatically creating a syn-
thetic road network or intersection, can create a near infinite
number of different road configurations. This supports a wide
variety of testing scenarios, and also permits modeling of a
wide range of road situations in many countries. In a similar
vein, support for a wide variety of driving behaviors for the
“NPC cars” (non-player character cars, or cars that are not
controlled by a full autonomous vehicle software stack) in
a scenario also permits modeling a wide variety of driving
situations in many different locations.

We present CruzWay, a system that both supports and cre-
ates autonomous vehicle testing scenarios. Notable features
of CruzWay include its support for procedurally generated
towns and intersections, and support for behavior tree (BT)
driven NPC car and pedestrian behavior models. Roads are
based on the road format used by the open source SUMO
traffic simulator, and hence CruzWay offers the potential
for integrating SUMO traffic simulations into autonomous
vehicle test scenarios. As compared to existing environments
that support autonomous vehicle simulation testing, CruzWay
is distinguished by its emphasis on procedural road gener-
ation, the self-contained nature of the BTs which supports
specialization of behavior, and its overall modularity.

In the remainder of the paper, we compare with related
work, describe the system architecture in detail, and provide
examples of supported road and NPC car behaviors.

2020 IEEE Intelligent Vehicles Symposium (IV)
October 20-23, 2020. Las Vegas, USA

978-1-7281-6673-5/20/$31.00 ©2020 IEEE 162

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There are many simulators for virtual testing of au-
tonomous vehicles (AV). Simulation products such as
PreScan [5], CarSim [6], Autoware [7], and rFpro [8] allow
engineers to simulate sensors, conditions, mechanical builds,
and mechanical decay. Game engine based simulators such
as CARLA [9], Apollo [10], Nvidia DRIVE [11], LGSVL
[12], and AirSim [13] are run with high-fidelity graphics
and real-time physics engines which helps developers model
collisions and agent dynamics.

Our work on CruzWay falls in this space of game engine
based simulations. The main advantage of game engine
based simulators is not only their support for graphics and
collision detection but also the ability to integrate the AV
stack with accurate sensor models. By using these tools and
features, one can manipulate textures, character animations,
and lighting to get a photorealistic simulation that makes the
game engine based simulators an ideal platform for testing
and validating perception, planning and other aspects of AV.
We briefly review CARLA, Apollo, Deepdrive, NVIDIA
DRIVE Constellation, AirSim, and LGSVL as they are
closest to our work. They use hand authored maps and test
scenarios, generally published at regular intervals. Our work
is different from these existing simulators in their capability
to generate realistic road structure and test scenarios pro-
cedurally. Although hand authored maps and test scenarios
give us a massive number of possibilities to test and train the
AV, it lacks the ability to generate emergent [14] behaviors
from the vehicles. Moreover, due to the lack of widely
adopted standards, most of these possible scenarios are not
transferable between platforms. In the following paragraph,
we will discuss these simulators’ abilities and features to
create/import maps and scenarios.

CARLA has a library of 3D models for vehicles, pedestri-
ans, buildings and road signs, and supports ingesting maps
using OpenDRIVE format files [15]. Scenarios in Carla can
be defined by using a Python API or by the OpenSCENARIO
standard and they provide some pre-authored scenarios to test
the submissions for their CARLA challenge [16].

Apollo is a Unity-based AV simulation platform that also
contains Dreamland [10] - a web-based simulation platform.
Its main features are a list of two hundred scenarios, the
ability to run simulations on the cloud, and an automatic
grading system which consists of metrics to assess au-
tonomous driving.

Deepdrive [17] provides three diverse maps and a traffic
AI that can overtake other agents and negotiate intersections
intelligently. Deepdrive offers five pre-authored scenarios and
a Python API to access all game engine features. There is a
version of Deepdrive available for the Unreal Engine.

AirSim provides 12 kilometers of virtual roads with 20
city blocks and APIs to retrieve data and control vehicles.
The APIs are accessible via a variety of programming lan-
guages. AirSim does not provide any pre-authored scenarios
but supports hardware-in-the-loop with driving wheels for
physically and visually realistic simulations.

NVIDIA DRIVE Constellation [11] is a cloud-based vir-
tual reality simulation platform that enables hardware-in-the-
loop testing. It comes with a 3D map and detailed assets
along with the capability to author traffic behavior at a micro
and macro [18] level. It is built using the Unreal Engine.
However, it is not open-sourced.

LGSVL [12] provides seven different maps to test the AV
stack. It uses predefined seed for deterministically controlling
and spawning NPC vehicles and pedestrians. It is built with
the Unity game engine.

In CruzWay, we are able to generate complex roads with
stop signs, detailed textures, splines and navigation meshes
procedurally. This implies that we can uniquely create high
variation in road structures with minimal artistic burden.
Other simulators lack these procedural generation capabil-
ities, with the CARLA simulator rapidly building some of
these up in the form of the OpenDrive standalone mode in
version 0.9.8 [15]. However, creating customized road struc-
tures and navigation meshes still needs other applications
and may not be procedural. Another feature in CruzWay is
BT controlled vehicles and pedestrians. Uniquely, each agent
here is controlled by its own BT. This provides the agents
and consequently the scenario emergent properties as the
agent behavior descriptions and assignments become more
complex. Other simulators use authored event or maneuver
based scenarios where agents aren’t able to dynamically
adapt to changing environments. However, BTs are supported
in CARLA’s scenario definition and execution engine, Sce-
nario Runner [16] which uses a single BT to define non
ego-vehicle behavior.

Table 1 summarizes a comparison of popular game engine
based simulation platforms across various metrics such as
their ability to create diverse simulation scenarios, whether
they are open-sourced and the ease with which they can be
integrated with AV software such as Autoware or Apollo.

III. SYSTEM ARCHITECTURE

The main requirement for the CruzWay system is the
capability of generating roads and intersections procedurally.
That is, we wish to have computer algorithms generate novel,
synthetic roads and intersections. This accommodates a large
range of road geometries and consequentially a wide variety
of lane markings and textures. Another requirement is the
ability to support agents in the simulation which can be
controlled using BTs. BTs allow us to design NPC (non-
player character) agents, such as vehicles and pedestrians,
with a wide variety of complex behaviors. There is also a
need to support an ego vehicle agent which is controlled
using a complete AV software stack in this simulation
environment. This would be our unit under test (UUT).

To minimize redundant work with respect to other, rele-
vant open source projects and to enable support for other
platforms such as SUMO, Apollo and CARLA, CruzWay is
designed to be highly modular. We generate road data sepa-
rately in a file and our road generation and NPC simulations
are designed as plugins for the Unreal Engine.

163

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.

Simulation environment metrics Carla Apollo Deepdrive AirSim LGSVL NVIDIA CruzWay

Diverse, emergent scenarios Not possible Not possible Not possible Not possible Not possible Not possible Possible
Access Open Open Open Open Open Commercial Open

Platform Unreal Web viz. Unreal Unreal Unity Unity Unreal
Procedurally generated roads/intersections No No No No No No Yes

TABLE I: A comparison of AV testing simulators.

Fig. 1: The system architecture of CruzWay. Standalone applications are shown in yellow-colored boxes. Applications that are
a part of a larger environment for road network generation are shown in blue, and dynamic behavior generation applications
are shown in purple.

The modules of CruzWay which are dynamic (where their
positions change with respect to time) are controlled with the
simulation scenario description. CruzWay supports a simple
scenario description in a vector form specifying the initial
configurations of agents in the simulation. These scenarios
are for testing components of the AV stack such as path
planning, behavior prediction and perception. The final result
of the system is a complex road network/intersection and
agents with complex behaviors. Since the road geometries
and NPC behaviors are procedurally generated, CruzWay can
create and run a large variety of simulation scenarios for
testing AV. A diagram of the complete system architecture
is shown in Figure 1.

The system works as follows: A hierarchical road network
specification file is generated using either TownSimPy or
IntGen applications for the purpose of generating town
scale road networks or individual road intersections respec-
tively. The road network file has a high-level description of
roads, including road length and connectivity information
but lacking exact shape descriptions of road and intersection
polygons. This specification is then read by a customized
Netgenerate application (which belongs to the SUMO traffic
simulator’s suite of applications) which generates a much
more detailed road network file in the standard SUMO road
network format. This file describes coordinates of the road,
intersection polygons, crosswalks, sidewalks, etc. This file
is then imported and converted into a geometry of road
meshes into the Unreal Engine using the Sumo2Unreal ap-
plication. A second stage adds procedural navigation meshes
(navmeshes). Using this road and navmesh information, other

agents (such as NPC cars and pedestrians) are procedurally
placed on top of these meshes according to a scenario
description. The medium of communication of road data to
vehicles and pedestrians in the simulation is through splines
and navmeshes respectively. With CruzWay, we can run a
wide variety of procedural simulation scenarios to capture
many of the situations which an AV would encounter in the
real world.

Below we describe the components of CruzWay in detail.

A. Road Generators: TownSim and IntGen

TownSim [19] is an agent based city evolution algorithm
that generates road networks. It procedurally generates town-
sized road networks with different road sizes that vary
from grid-like sections to organic, dendritic sections. Figure
2 shows an example of a road network generated using
TownSim and imported via Sumo2Unreal.

IntGen [20] is a road intersection generator with the
capability to create a detailed specification file of a road
intersection. The inputs to this application are a number of
command-line parameters detailing the intersection informa-
tion as well as details of individual roads. The output is a
road specification file represented in JSON format which can
be read by Netgenerate. It details the high-level intersection
information in the form of the Cartesian coordinates of the
intersection, the number of incoming roads for it and the
presence of pedestrian crosswalks. This data also specifies
details of each incoming road, including the length (in
meters), start and end points, the number of lanes (and turn
lanes) and the presence of sidewalks. Having these many
parameters allows this application to express a large range

164

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: A town sized road network generated using Town-
Sim, imported using Sumo2Unreal, and rendered on Unreal
Engine.

Fig. 3: A four-way intersection generated using IntGen. All
of the incoming roads have one turn lane and one of the
incoming roads has four lanes, while the remaining default
to two lanes each. Note thin lines, which are splines used by
NPC cars.

of road intersection types. Consequently, this would allow
an even larger space of scenarios. Examples of four-way
and five-way intersections generated by IntGen are shown
in Figures 3 and 4.

B. Enhanced Netgenerate

Netgenerate is a road network generation tool within the
SUMO traffic simulator suite of applications. Netgenerate
typically has the capability to generate synthetic grid net-
works, spider networks and random networks. For CruzWay,
we extended Netgenerate [21] to accept the JSON formatted
road specification files created by IntGen or TownSimPy.
The output of Netgenerate is a road network XML file in
the SUMO road network format. This XML file contains
much more detail regarding individual roads and sidewalks.
By extending Netgenerate, we can generate a wider variation
of SUMO road networks than the three mentioned above. We
can then use other SUMO applications such as Netconvert
which can convert SUMO road networks to other standard
road network formats such as OpenDrive and MATsim. This
pipelining allows us to generate in multiple road network
formats thereby allowing us to generate roads for multiple
platforms. It also permits running traffic simulations using
SUMO. We can then import this road network into the

Fig. 4: A five-way intersection generated using IntGen.

Unreal Engine as procedurally generated road meshes by
using Sumo2Unreal.

C. Sumo2Unreal

Sumo2Unreal [22] is an Unreal Engine plugin for im-
porting a SUMO road network file into the Unreal Engine
as procedural road meshes. Unreal Engine is a widely
used game engine that supports the creation of real-time
software with high-fidelity graphics. Procedural road meshes
generated include driving lanes, sidewalks and pedestrian
crossings. Using Unreal Engine provides us with many useful
capabilities, such as built-in 3D models such as cars, an API
for creating BTs, along with photorealistic graphics such as a
variety road textures. Sumo2Unreal generates stop signs for
road networks describing road intersections only (such as the
ones from IntGen). Sumo2Unreal also generates splines from
a collection of SUMO road way points. These splines can
be used by BT controlled cars to to follow logical lanes and
make turns correctly. Splines also contain other information,
such as other splines connected to them (in the driving
direction) and whether there is a stop sign at the end of
the spline segment. Together, the splines and the navigation
meshes are able to communicate the map data to cars and
pedestrians in the simulation.

The movements of pedestrians are more fine-grained than
vehicles. The action space includes walking, running, jump-
ing, to any combination of the above. A Navigation Mesh
(NavMesh) is a path-finding data structure that guides the
agent to navigate through complicated spaces. Compared to
splines, NavMeshes can model more complex motion behav-
iors and supports crowd simulation. Specifically, CruzWay
uses NavMeshes to define the potential walkable areas for
pedestrians in the scene. Walkable areas include sidewalks,
roads, and all areas a pedestrian can step onto. This enables
the scenario generator to produce both standard test cases
and edge cases where the pedestrians are jaywalking.

Areas in the NavMesh can have attributes such as cost and
constraints using this cost attribute. In CruzWay, undesirable
locations are marked with higher costs. When determining
the shortest path from one waypoint to the next, an NPC

165

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Procedurally generated navigation bounds volume
(green, normal cost) and navigation modifiers (red, high cost)
on the four-way intersection. Pedestrians tend to navigate
across green areas.

pedestrian tends to avoid higher-cost areas, such as the
road. However, pedestrians can still cross higher-cost areas
if the path is the shortest. Unreal achieves this with the
NavMesh Modifier Volume component, which is an explic-
itly annotated volume with properties such as positions and
dimensions to mark different areas. We procedurally generate
Modifier Volumes along with NavMesh Bounds Volumes on
the scene, as shown in Figure 5.

Hence, with CruzWay, we are able to generate complex
roads inside a game engine with stop signs, detailed textures,
splines and navigation meshes procedurally. This implies that
we can generate high variation in road structure with minimal
artistic burden.

D. Behavioral Agents

To create diverse simulation scenarios, CruzWay employs
Behavior Trees (BTs) [23], a popular technique used in video
games to author NPC behaviors. BTs support an execution
approach that involves sensing the world, determining one or
more actions based on the state of the world, then enacting
those actions. Basic actions are arranged in a tree like
structure, with basic actions as leaves and containers as
internal nodes. Containers have varying execution semantics,
including: executing a series of actions (sequence), trying
actions until one succeeds (fallback), or trying actions in
parallel (parallel). Figure 7 shows an example BT.

BTs have many beneficial qualities that led to our adoption
in CruzWay, including modularity, reusability, controllability,
and the ability to iteratively add complexity to an NPC car or
pedestrian. Unreal also has a designer-friendly user interface
for creating BTs. Unreal’s implementation of BTs uses an
event-driven approach (as compared to the traditional tick-
based implementation), which leads to lower processor use,
and permits better scalability [24]. CruzWay has successfully
run over 75 simultaneous BT NPC vehicles in real-time.

Cruzway includes two types of BT controlled agents:
vehicles (BT-vehicle) and pedestrians (BT-pedestrian), which
is shown in Figure 6.

Fig. 6: Multiple BT-car and multiple BT-pedestrian agents at
an intersection.

1) BT-vehicle: All of the BT controlled NPC vehicles
receive information about the road through the spline data
structure. Splines contain information about other splines
connected to the current spline, stop sign locations, and speed
limit signs. NPC vehicles navigate through the environment
using this information. We define a driver for an NPC
vehicle as a set of threshold values, for example, Thresh-
oldDistanceStopSign determines when a driver will start the
maneuver StopAtStopSign. These threshold values are stored
in the blackboard along with other information necessary for
the BT to run. By setting different threshold values, driver
behaviors can be altered. For example, more aggressive
behavior can be formed by decreasing the ThresholdDis-
tanceStopSign and increasing the ThresholdBrakeValue

The behavior of our NPC cars is shown in Figure 7. In
general, the car accelerates up to a preset velocity value
and then maintains that velocity. The selector node looks for
conditions that might change this default behavior. The first
child node of each Sequence node is a precondition check. In
this tree, the cars check to see if it is nearing a stop sign or is
reaching the end of a spline. If so, the node to its right will
execute, causing either a stop at the stop sign or changing a
spline. According to the current implementation, NPC cars
select a random spline from the connected splines when a
spline change behavior happens. Since BTs are modular,
future BTs (such as for a bicycle) can also make use of the
same spline changing behavior. By procedurally generating
BT and changing the driver behavior thresholds, a range of
behaviors and scenarios can be created.

2) BT-pedestrian: All BT controlled NPC pedestrians
perceive road and sidewalk information through the gen-
erated navigation meshes. Unreal pre-computes NavMesh
data structures offline and can update them dynamically at
run-time. This enables pedestrian movement components to
bypass obstacles or other pedestrian agents and re-adjust
routes in real-time. The simplest NPC pedestrian model
selects an arbitrary random location on the sidewalk area
and navigates to the destination using the single source
shortest path algorithm. All pedestrian agents share the same
NavMesh, supporting multi-agent path-finding (Fig. 8).

166

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: A vehicle BT containing precondition nodes and task
nodes. The car will stop at the stop sign if it detects a stop
sign. Otherwise, it will continue driving and change the lane
if it has reached the end of the spline.

Fig. 8: Multiple BT-driven pedestrian agents walking across
a crosswalk.

E. Scenario Generation

CruzWay has the capability to create scenarios consisting
of BT vehicles and pedestrians. Vehicles and pedestrians
can be spawned at different times during the scenario. At
spawn time, vehicles are initialized with an initial spline
position. Multiple cars can be spawned on a single spline
at different non-colliding spline distance. Vehicles are not
limited to being spawned at specific spawn points defined
on the map (as is the case in other environments, such
as CARLA). Pedestrians are spawned at a specific location
within a low-cost navmesh region, with a randomly chosen
destination. In the current implementation of CruzWay, we
can create scenarios with multiple cars that follow stop sign
rules, follow lane maintenance rules and safely accelerate
when the road ahead is safe. Scenarios can support multiple
pedestrians with varied destination points. Simulation param-
eters are represented in a vector format, which is well suited
for reasoning over scenario execution runs.

Though not currently implemented, our simulation ar-
chitecture is well suited to support scenarios containing
vehicles with varying behaviors. Due to the modularity of
BTs, different vehicle behaviors can easily be assembled,
and multiple cars with varying behaviors can be executing

simultaneously. Similarly, BTs can support multiple simul-
taneous pedestrian models. Scenarios contain a wide variety
of behaviors, leading to greater diversity in the simulation,
thereby modeling a wide range of real-world situations.

IV. CONCLUSION

CruzWay is a simulation environment for creating scenar-
ios to test autonomous vehicles. As compared to other simi-
lar environments, CruzWay supports procedurally generated
roads and intersections, thereby supporting a much wider
range of road geometry. CruzWay supports procedural road
mesh and navmesh generation based on SUMO road network
files. BT driven vehicles and pedestrians allow for scenarios
to be populated with intelligent agents comprised of modular
behaviors. In combination, these capabilities support the
generation of a broad range of scenarios involving vehicles
and pedestrians navigating through procedurally generated
worlds. CruzWay’s modular architecture allows for subcom-
ponents to be reused in other contexts and environments.

ACKNOWLEDGMENT

This work was supported by a URP award from Ford
Motor Corporation. Jelica Hipolito created the models and
textures for the road surface, lane markings, sidewalks, and
road signs.

REFERENCES

[1] M. DeBord, “Waymo just crossed 10 million self-driving miles –
but the company has a secret weapon that gives it even more of
an edge,” https://www.businessinsider.com/waymo-self-driving-cars-
secret-weapon-is-simulation-testing-2018-10, 2018, web page, ac-
cessed 17 April 2019.

[2] A. C. Madrigal, “Inside Waymo’s secret world for training self-driving
cars,” https://www.theatlantic.com/technology/archive/2017/08/inside-
waymos-secret-testing-and-simulation-facilities/537648/, 2018, web
page, accessed 17 April 2019.

[3] K. Wiggers, “Aurora urges autonomous vehicle industry to adopt
better safety metrics,” https://venturebeat.com/2020/01/24/aurora-
urges-autonomous-vehicle-industry-to-adopt-better-safety-metrics/,
2020, web page, accessed 9 March 2020.

[4] National Transportation Safety Board, “Collision between a sport
utility vehicle operating with partial driving automation and a
crash attenuator,” https://www.ntsb.gov/news/events/Documents/2020-
HWY18FH011-BMG-abstract.pdf, Meeting minutes, Feb. 25, 2020.

[5] TASS International. (2020) Prescan: Simulation of adas & active
safety. https://tass.plm.automation.siemens.com/prescan. Web page,
accessed 12 March 2020.

[6] Mechanical Simulation Corporation. (2020) CarSIM.
https://www.carsim.com/. Web page, accessed 12 March 2020.

[7] Autoware. (2020) Autoware.AI. https://www.autoware.ai/. Web page,
accessed 12 March 2020.

[8] rFpro. (2020) rfpro: Simulation software. http://www.rfpro.com/about/.
Web page, accessed 12 March 2020.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[10] ApolloAuto. (2019) Apollo Dream-
land. https://github.com/ApolloAuto/
apollo/blob/master/docs/specs/Dreamland introduction.md. Web
page, accessed 12 March 2020.

[11] NVIDIA, “NVIDIA Drive - autonomous vehicle development plat-
forms,” https://developer.nvidia.com/drive, 2020, web page, accessed
10 March 2020.

[12] LGSVL Simulator, “LGSVL simulator overview,”
https://www.lgsvlsimulator.com/downloads/ LGSVL-Simulator-
Overview.pdf, 2020, web page, accessed 10 March 2020.

167

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.

[13] Microsoft. (2020) Airsim. https://microsoft.github.io/AirSim/. Web
page, accessed 12 March 2020.

[14] Wikipedia. (2020) Emergence. https://en.wikipedia.org/wiki/Emergence.
Web page, accessed 12 March 2020.

[15] CARLA. Carla 0.9.8 release. http://carla.org/2020/03/09/release-0.9.8/.
Web page, accessed 14 May 2020.

[16] CARLA. ScenarioRunner for CARLA. https://github.com/carla-
simulator/scenario runner. Web page, accessed 12 March 2020.

[17] Deepdrive Voyage. Build self-driving ai.
https://deepdrive.voyage.auto/. Web page, accessed 12 March
2020.

[18] H. Abouaissa, D. Jolly, A. Benasser et al., “Macro-micro simulation of
traffic flow,” IFAC Proceedings Volumes, vol. 39, no. 3, pp. 351–356,
2006.

[19] A. Song and J. Whitehead, “Townsim: agent-based city evolution
for naturalistic road network generation,” in Proc. 10th Workshop on
Procedural Content Generation (PCG 2019), 2019, pp. 1–9.

[20] I. Paranjape. (2019) IntGen. https://github.com/AugmentedDesignLab/
intgen. Web page, accessed 12 March 2020.

[21] ——. (2019) Modified Netgenerate.
https://github.com/AugmentedDesignLab/sumo-
mirror/tree/sumoIntgen. Web page, accessed 14 May 2020.

[22] ——. (2019) Sumo2Unreal. https://github.com/AugmentedDesignLab/
Sumo2Unreal. Web page, accessed 12 March 2020.

[23] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI:
An Introduction. CRC Press, 2019.

[24] Unreal Engine. (2020) Behavior tree overview.
https://docs.unrealengine.com/en-US/Engine/ ArtificialIntelli-
gence/BehaviorTrees/BehaviorTreesOverview/index.html. Web
page, accessed 12 March 2020.

168

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on December 02,2021 at 22:27:47 UTC from IEEE Xplore. Restrictions apply.
View publication stats

https://www.researchgate.net/publication/348367229

